31 lines
788 B
JavaScript
31 lines
788 B
JavaScript
/**
|
||
* @param {string} text1
|
||
* @param {string} text2
|
||
* @return {number}
|
||
*/
|
||
const longestCommonSubsequence = function (text1, text2) {
|
||
|
||
};
|
||
|
||
/*
|
||
定义dp[i][j]为text1从i位置开始统计,text2从j位置开始统计的最长公共子序列长度,如果text1[i]和text2[j]相等,则dp[i][j]=dp[i+1][j+1]
|
||
若不相等则,dp[i][j] = max(dp[i+1][j], dp[i][j+1])
|
||
*/
|
||
function f1(text1, text2) {
|
||
const m = text1.length;
|
||
const n = text2.length;
|
||
|
||
const dp = Array.from({ length: m + 1 }, () => Array(n + 1).fill(0));
|
||
|
||
for (let i = m - 1; i >= 0; i--) {
|
||
for (let j = n - 1; j >= 0; j--) {
|
||
if (text1[i] === text2[j]) {
|
||
dp[i][j] = dp[i + 1][j + 1] + 1;
|
||
} else {
|
||
dp[i][j] = Math.max(dp[i + 1][j], dp[i][j + 1]);
|
||
}
|
||
}
|
||
}
|
||
return dp[0][0];
|
||
}
|