feat: 数组中第k个最大值(215)

This commit is contained in:
= 2024-05-22 18:12:37 +08:00
parent 09c9e2c45e
commit 333aec6eaa

View File

@ -0,0 +1,163 @@
/*
215. 数组中的第K个最大元素
中等
相关标签
相关企业
给定整数数组 nums 和整数 k请返回数组中第 k 个最大的元素
请注意你需要找的是数组排序后的第 k 个最大的元素而不是第 k 个不同的元素
你必须设计并实现时间复杂度为 O(n) 的算法解决此问题
示例 1:
输入: [3,2,1,5,6,4], k = 2
输出: 5
示例 2:
输入: [3,2,3,1,2,4,5,5,6], k = 4
输出: 4
提示
1 <= k <= nums.length <= 105
-104 <= nums[i] <= 104
*/
// 思路1:排序之后直接取,但是不符合题目要求
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
const findKthLargest = function (nums, k) {
nums.sort((a, b) => a - b);
return nums[nums.length - k];
};
// 使用快速选择算法
/**
* @param {number[]} nums
* @param {number} k
* @return {number}
*/
const partition = (nums, left, right) => {
const pivot = nums[right];
let i = left;
for (let j = left; j < right; j++) {
if (nums[j] < pivot) {
[nums[i], nums[j]] = [nums[j], nums[i]];
i++;
}
}
[nums[i], nums[right]] = [nums[right], nums[i]];
return i;
};
const quickSelect = (nums, left, right, k) => {
if (left === right) return nums[left];
const pivotIndex = partition(nums, left, right);
if (pivotIndex === k) {
return nums[k];
} if (pivotIndex < k) {
return quickSelect(nums, pivotIndex + 1, right, k);
}
return quickSelect(nums, left, pivotIndex - 1, k);
};
const findKthLargest2 = function (nums, k) {
return quickSelect(nums, 0, nums.length - 1, nums.length - k);
};
// 使用最小堆
class MinHeap {
constructor() {
this.heap = [];
}
size() {
return this.heap.length;
}
peek() {
return this.heap[0];
}
insert(value) {
this.heap.push(value);
this.heapifyUp();
}
remove() {
if (this.size() === 1) {
return this.heap.pop();
}
const root = this.heap[0];
this.heap[0] = this.heap.pop();
this.heapifyDown();
return root;
}
heapifyUp() {
let index = this.size() - 1;
while (index > 0) {
const parentIndex = Math.floor((index - 1) / 2);
if (this.heap[parentIndex] <= this.heap[index]) break;
[this.heap[parentIndex], this.heap[index]] = [this.heap[index], this.heap[parentIndex]];
index = parentIndex;
}
}
heapifyDown() {
let index = 0;
const length = this.size();
const element = this.heap[0];
while (true) {
const leftChildIndex = 2 * index + 1;
const rightChildIndex = 2 * index + 2;
let leftChild; let
rightChild;
let swap = null;
if (leftChildIndex < length) {
leftChild = this.heap[leftChildIndex];
if (leftChild < element) {
swap = leftChildIndex;
}
}
if (rightChildIndex < length) {
rightChild = this.heap[rightChildIndex];
if ((swap === null && rightChild < element) || (swap !== null && rightChild < leftChild)) {
swap = rightChildIndex;
}
}
if (swap === null) break;
[this.heap[index], this.heap[swap]] = [this.heap[swap], this.heap[index]];
index = swap;
}
}
}
const findKthLargest3 = function (nums, k) {
const minHeap = new MinHeap();
for (const num of nums) {
minHeap.insert(num);
if (minHeap.size() > k) {
minHeap.remove();
}
}
return minHeap.peek();
};
// 示例测试
console.log(findKthLargest([3, 2, 1, 5, 6, 4], 2)); // 输出: 5
console.log(findKthLargest([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 输出: 4
console.log(findKthLargest2([3, 2, 1, 5, 6, 4], 2)); // 输出: 5
console.log(findKthLargest2([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 输出: 4
console.log(findKthLargest3([3, 2, 1, 5, 6, 4], 2)); // 输出: 5
console.log(findKthLargest3([3, 2, 3, 1, 2, 4, 5, 5, 6], 4)); // 输出: 4